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Abstract

Considering the highly nonlinear and non stationary
features of the ECG signal proven by latest researches, the
most appropriate methods of analysis are based also on the
nonlinear dynamics; we used a modified root mean sguare
analysis of a random walk, named detrended fluctuations
analysis (DFA), which proved efficacy as diagnostic tool
and advantages on the existing related methods.

Our studies were conducted on two groups of young and
old subjects, totally 24 patients, and the different behavior
being related to the underlying dynamics of the heartbeat.

We compare the data results using the DFA method:
first when a line segment is fitted and second, when a
quadratic polynomial isfitted in the least-squares sense

Applications of this analysis may lead to new and safe
diagnosis for patients and to evaluation of the patient status
in systemic diseases that may affect in time the cardio-
vascular system.

Keywords: Cardiac rhythm; Heart rate variability;
Nonlinear Dynamics, Detrended Fluctuation
Anaysis.

l. I ntroduction

The human heart is a complex spatiotemporal dynamic
system, about which we know little. In spite of great
progress of simulations [1, 2] much remains to be done. For
today is necessary to analyze the experimental data from
ECG. These are improved by using the new aquisitons of
nonlinear time series[3].

Given the high prevalence and extinguished area of
cardiovascular diseases in the last decades, the importance
of diagnosis increased proportionally. The accent is put on
the ability to record and analysis massive datasets of
continuoudly fluctuating signals. First condition being
aready accomplished due to technological progress,
scientists are focusing actually on anaysis of these
datasets.

HRV (heart rate variability) or the study of cardiac
rhythm fluctuations has attracted the interest of scientistsin
the recent years for its hypotetical predictive value in the
evolution of heart disease.

The e€lectrocardiogram (ECG) is considered the
outstanding method of assessing cardiac rhythm for two
reasons. first, an ECG is easily recorded and second, the
ECG chart of a full cardiac beat shows a characteristic

eak caled R due to the ventricular contraction. This
78037211 5/0%?5 0092001 IEEE

peak is high that means easily detectable and narrow
localized with high precison. The RR time interval
between two R peaks gives the heart beat period, and the
RR series (the succession of the RR durations) is the
standard tool for measuring a patient’s cardiac rhythm. The
interest at stake is high, since cardiovascular casualty is a
high mortality factor in industrialized countries.

Though ECG, as a complex signal, has been shown to
represent processes that are nonlinear, non stationary and
non equilibrium -like in nature, the tools used in the
conventional analysis still assume linearity, stationarity and
equilibrium -like conditions.

Linear systems are predictable. The magnitude of their
responses is proportionate with the strength of the stimuli.
Further, linear systems can be fully understood and
predicted by dissecting out their components .The subunits
of a linear system add up - there are no surprises or
anomalous behaviors. By contrast, for non-linear systems
proportionality does not hold: small changes can have
striking or unanticipated effects [7]. Another complication
is that non -linear systems cannot be understood by
analyzing their components individualy, because they
interact [5].

In this context, a further integration applied to the signal
exaggerates the no stationary character of ECG, often
generating errorsin diagnosis.

From an engineering point of view, the RR seriesisjust a
long discrete signal RR [n] to which signal processing can
be applied. If heartbeats were perfectly regular, the RR
series would give rise to a constant signal.

The time series obtained by plotting the sequential
intervals between beat i and beat i+1, denoted by B(i),
reveals a complex type of variability. Cardiac interbeat
intervals fluctuate as a complex, apparent erratic manner in
healthy subjects even at rest [8].

Therefore, we should find efficient signal processing
methods, which distinguish RR series of young patients
from the old ones.

Cardiologists first used classical signal processing
methods, either “temporal” (calculation of datistical
parameters on the RR series), or “frequent” (spectra
distribution of energy between high and low frequencies).
The development of chaos theory has introduced many new
tests meant to detect determinism in a signal and evaluate
its complexity: standard methods include phase space
reconstruction, Poincare sections, Lyapunov exponents and
Kolgomorov entropy [9].

The present paper studies the evolution of long-term
correlations in the RR series, quantified by DFA (detrended
fluctuations analysis) applied to cardiac rhythm.
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IILMETHODOLOGY
I1.1 DFA - definition of the method

The calculation procedure for the DFA function (F-DFA)
and for its characteristic coefficients (O -DFA) is presented
inan article of Peng et al [1].

Details are briefly presented below.

[1.2 DFA FUNCTION (F-DFA)

Consider a series B [i], i=1,...,N, for which we want to
evaluate the F-DFA. B is the series of RR time intervals
between ventricular contractions of heart[1-3].

First, we calculate the indefinite integral of B by:

y[k]=i[8[i]—§]

where B isthe mean of B assessed over the whole series.
The mean B in the formula has no influence on the value of
F [n]. It has been introduced for numerical reasons: to limit
overflow risks and to prevent small numbers from being
added to large ones.

Then, we divide y [K] into windows of equal length n .It
is not possible in general to divide exactly the N points of
the series into windows of exact length n. For each value of

newel n are defining N, the larger multiple of n, inferior
or equal to N.

Referring to each window, aline segment is fitted to y[K]
in the least-squares sense, and we call y,[k], k=1, N, the
concatenation of these successive line segments. Then, in
each window, we detrend y [K] by substracting vy, [K] from
y[K].

For each n, the value of the F-DFA is defined by:

1 N :
FInl= -5 (1K1-Y,[K)
N?

The value characterizes the root mean square fluctuation of
the detrended indefinite integral of BJi].

The DFA method normally detrends the data by
determining the fluctuations about the least square s best fit
straight line in each window of observation. Another way
of detrending the data is to modify the DFA agorithm to
remove “trends’ at all time scales.

Detrending was perform by fitting the data with linear
and quadratic polynomials and by then subtracting the
fitted curve from the data.

1.2 a-DFA

After performing the mathematical operations described
above, it is of major importance to find a power law yn® to
fit F [n]. For this purpose, we have to calculate the linear
best fit (in the lest square-sense) to the graph of logF versus
log n. The slope of this line represents the a-DFA
coefficient [8].

For more accuracy, we calculated for each data set two
coefficients: oy, for 4<n<16 and a,for 16<n<64.

The program that we implemented isin QBasic. Also, the
program can be implemented for the other physiological
signals: stride gait, EEG, human cognitive process, DNA.

1. RESULTS

1.1 MATERIAL AND METHOD

The ECG was recorded classically and we took them
from the databases on Internet [10]. The collection consists
of 10 heart beat time series: 11 young healthy subjects and
13 elderly healthy subjects. The length of each recording is
approximately 2 hours.

The young (21 - 34 years old) and the elderly subjects (68
- 81 vyears old) rigorously-screened healthy subjects
underwent 120 minutes of continuous supine resting while
continuous electrocardiographic (ECG) signals were
collected.

The analyses are based on the beat-to-beat heart rate
fluctuation of digitized electrocardiograms recorded with
an ambulatory (Holter) monitor. Each heartbeat was
annotated using an automated arrhythmia detection
algorithm, and each beat annotation was verified by visual
inspection. The R-R interval (interbeat interval) time series
for each subject was then computed.

The study consisted in 22 subjects: 13 old and 11 young.
After excluding technically inadequate dates, we used the
algorithms above-mentioned to study HRV.

[11.2 PRETREATMENT OF DATASET

1. When M [i] isa RR series, it is preferable to apply a
pretreatment in order to remove artifacts such as extra
systoles or undetected R peaks. Before applying DFA to
our RR series, we used the following pretreatment
recommended by Goldberger et al. [6]

2. For each set of five contiguous RR intervals, we
compute the local mean excluding median interval: RR
mean [i] = (RR[i-2] +RR[i-1]+ RR[i+1] + RR[i+2]) / 4.
The central interval, RR [i], is considered to be an outliner
unless it lies within a 20% interval around RR mean [i].
Any interval identified as outlier is rejected, and a new RR
seriesisrebuilt with the remaining RR intervals

V. DISCUSSION

Aging is associated with changes in balance in heart rate
variability that may lead to a cause of morbidity and
mortality in the elderly.

Previous studies [4] have shown that old subjects have
particularly low a; and high a,.

For the first case, when a line segment is fitted to y [K]
in the least-squares sense, we obtained the long-range
correlation exponent:
¢ for young subjects:

0,=0,97+ 0,26 ; 0,=0,96 + 0,18

+ for old subjects:
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0,=0,56 * 0,23; 0,=0,98 + 0,31
Based on hypothesisthat there is aregion of
scaling behavior, we obtained the graph:
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Fig.1. Scatter plot of scaling exponents a4, a, when aline
segment isfitted,

For the second case, when a quadratic polynomial is
fitted to y [K] in the least-sgquares sense, we obtained the
long-range correlation exponent:
¢ for young subjects:

a,=1,02 % 0,39; 0,=0,98 * 0,22
+ for old subjects:
0,=0,96+ 0,35; 0,=0,79+ 0,26
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Fig.2. Scatter plot of scaling exponents a;, o, when a
quadratic polynomial is fitted.

In the below graph we represented the exponent o for
young and elder subjects when a quadratic polynomial and
aline segment isfitted.
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Fig.3. Scatter plot of scaling exponents a; for young and
elder subjects.

The difference for the elder subjects when a quadratic
polynomial and aline segment is fitted for the exponent a,
isrepresented infig. 3.
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Fig.4. Scatter plot of scaling exponents a, for young and
elder subjects.

The results of the long-range correlation exponent a4, o,
indicate that there is a significant difference in the scaling
behavior between young and old states, consistent with a
breakdown in long range correlation.

Figures 5, 6, 7 and 8 compare a representative result of
fractal scaling analysis of representative 24-hour interbeat
interval time series, both with linear and polynomial fitting
from a young subject and an old one.

We represented the RR beat intervals (blue) and the
parameters a; (red), o, (magenta).
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Fig.5. Scatter plot of scaling exponents a, o, for ayoung
subject when aline segment is fitted to y [k] in the least-
squares sense
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Fig.6. Scatter plot of scaling exponents a;, o, for ayoung
subject when a quadratic polynomial isfitted toy [K] in the
least-squares sense.
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Fig.7. Scatter plot of scaling exponents a,, o, for an elder

subject when aline segment is fitted to y [K] in the | east-
squares sense.
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Fig.8. Scatter plot of scaling exponents a,, o, for an elder
subject when a quadratic polynomial isfitted to y [k] in the
least-squares sense.

The dlopes obtained after detrending using second
polynomial were virtually identical to the slopes obtained
using the first-order linear detrending.

IV CONCLUSIONS

The main conclusions of our study are the following:

= The qualitative analysis with DFA shows different
behavior in the group of subjects, both young versus
elder. Given the large variety of pathological
expressions we found useful the program we
implemented in QBasic, following the DFA
algorhytm, to separate diseased people, thus improving
diagnosis accuracy and estimating primarily the risk of
sudden death.

= The anaysis was applied to study the effect of
physiologic aging. Twelve young (21-34 years) and
ten elderly (68-81 years) healthy subjects underwent 2
hours of continuous supine resting ECG recording. In
healthy young subjects, the scaling exponent had an
value close to 1.0. In the group of healthy elderly
subjects, the interbeat interval time series exponents a,
and o, were significantly different, more less,
comparative with young subjects.

= Aging is associated with distinctive aterations in the
scaling properties which could be of practical
diagnostic and prognostic use; the fractal scaling
pattern for the elder subject is significantly altered
compared with young adults. This mean that
physiological aging have effect on the degradation in
long-range interbeat interval correlations, specific for
every subject;

= If the subjects have close values for a4, in the case
that the line segment is fitted in the least-square sense,
we would distinguish the subjects using the second
method, when a quadratic polynomia is fitted in the
least square sense;

=  Fuctuation analysis reveals a marked distinction in
how the fluctuations change with time scale for these
subjects. The interbeat interval fluctuations are more
random (less correlated) for the elderly subject than for
the young subject, a difference not detectable by
comparing the first and second moments.

= The method in discussion is applicable to improve
diagnostic tools or calculating risks, to evaluate the
patient's status at a certain moment, being of great
importance in estimating recovery of patients with
diseases that affect the cardiovascular system and to
obtain important information about heart instability
among the elderly.

= For the reasons exposed above, those we do not
consider these conclusions definitive and we did not
finish our study, we recommend the DFA as screening
method for the status of cardiovascular system.
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